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Abstract

We propose a novel fictitious domain method based on a distributed Lagrange multiplier technique for the solution

of the time-dependent problem of scattering by an obstacle. We study discretizations that include a fully conforming

approach as well as mixed finite element formulations utilizing the lowest order Nédélec edge elements (in 2D) on rect-

angular grids. We also present a symmetrized operator splitting scheme for the scattering problem, which decouples the

operator that propagates the wave from the operator that enforces the Dirichlet condition on the boundary of an obsta-

cle. A new perfectly matched layer (PML) model is developed to model the unbounded problem of interest. This model

is based on a formulation of the wave equation as a system of first-order equations and uses a change of variables

approach that has been developed to construct PML�s for Maxwell�s equations. We present an analysis of our fictitious

domain approach for a one-dimensional wave problem. Based on calculations of reflection coefficients, we demonstrate

the advantages of our fictitious domain approach over the staircase approximation of the finite difference method. We

also demonstrate some important properties of the distributed multiplier approach that are not shared by a boundary

multiplier fictitious domain approach for the same problem. Numerical results for two-dimensional wave problems that

validate the effectiveness of the different methods are presented.
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1. Introduction

A fictitious domain method is a technique in which the solution to a given problem is obtained by

extending the given data to a larger but simpler shaped domain, containing the original domain, and solv-

ing corresponding equations in this larger fictitious domain. Let X � Rd ðd ¼ 1; 2; 3Þ be a domain which
contains an inclusion x as shown in Fig. 1. We consider solving for U in a boundary value problem of

the type
AðUÞ ¼ f ; in X n �x;

BCðUÞ ¼ g0; on C ¼ oX;

BoxðUÞ ¼ g1; on ox;

ð1Þ
where the functions f, g0, g1 and the operators A, BC, Box, are known.

If X has a simple shape, as in Fig. 1, then we can take advantage of this by allowing the use of uniform

finite difference grids or finite element meshes and hence of fast solvers for the numerical solution of the

finite dimensional systems approximating (1) on such grids. To this end we replace (1) by another problem.

Find / defined over X and Mc a measure supported by ox, so that
ðiÞ eAð/Þ ¼ ~f þM c; in X;

ðiiÞ eBCð/Þ ¼ g0; on C ¼ oX;

ðiiiÞ eBoxð/jXn�xÞ ¼ g1; on ox;

ð2Þ
where the operator eA is of the same type as A and coincides (in some sense) with A on X n �x, ~f is some

extension of f over X and eBC, and eBox are extensions of BC, and Box, respectively. If we choose the measure

Mc so that the solution of (2, i, ii) satisfies relation (2, iii) then we can expect to have /jXn�x ¼ U.
Fictitious domain methods can be traced back to the 1960s to Saul�ev [1]. The fictitious domain can be a

rectangle or a circle, for example. The advantage of this method is that the problem in the fictitious domain

can be discretized on a uniform mesh, independent of the boundary of the original domain, thus avoiding

the time consuming construction of a boundary fitted mesh as in the finite element method. (However, there
are some classes of fictitious domain methods that use boundary fitted meshes to improve accuracy [2].) At

the same time, such an approach is more accurate than the staircase approximation of the finite difference

method.

A fictitious domain method is also known as a domain imbedding method [3] or a fictitious component

method [4]. A related technique is the capacitance matrix method [5,6]. One class of fictitious domain
Fig. 1. The obstacle x embedded inside the larger domain X.



244 V.A. Bokil, R. Glowinski / Journal of Computational Physics 205 (2005) 242–268
methods involves using distributed/boundary Lagrange multipliers to enforce the boundary conditions on the

boundaries of the original smaller domain. This is known as the functional analytic approach; it leads to

saddle point problems and has been considered jointly by Glowinski et al. [7,8] and by Kuznetsov [9–11]

among others. This is the class of methods that we will consider in this paper. The functional analytic ap-

proach was originally developed to handle problems with complex geometries in the stationary case [8,12].
The application of this approach to time dependent problems is relatively new and has recently been studied

by Glowinski and Joly among others [13–16].

There are other classes of fictitious domain methods. We will mention some of these briefly. One class of

methods uses an optimal control approach [17,18]. In this approach, the system is solved in the fictitious

domain, with a distributed/boundary control introduced on the right hand side of the system equations.

The control forces the solution to satisfy the required boundary conditions, at least approximately. This

approach resembles the Lagrange multiplier technique. In some cases the solution of the optimal control

problem is obtained by solving the optimality conditions. The cost function here consists of two parts;
one part penalizes the boundary condition and the other part penalizes the control inside the original do-

main/boundary [18]. This leads to an optimization problem. Fictitious domain methods are often used to

construct a preconditioner for iterative methods such as Krylov subspace methods. One such approach is

called an algebraic fictitious domain method [4,2].

In this paper, we will apply a distributed Lagrange multiplier based fictitious domain method to a time-

dependent scattering problem. For problem (2), this approach implies finding a measure Mx supported

over the domain x instead of just the boundary c, and satisfying the Eq. (2, iii) on x instead of c. We con-

sider the scalar wave equation with constant coefficients. We are interested in studying the scattering of a
wave by an obstacle x � Rd with d = 2 (or d = 3). Let c denote the speed of propagation. The scalar evo-

lution problem is to find U such that:
ðiÞ 1

c2
o
2U
ot2

� DU ¼ 0; in X n �x;

ðiiÞ U ¼ G; on ox;

ðiiiÞ 1

c
oU
ot

þ oU
on

¼ 0; on C ¼ oX;

ðivÞ Uð0Þ ¼ U0;
oU
ot

ð0Þ ¼ U1:

ð3Þ
In Fig. 1, x is a disk which is embedded in the larger bounded rectangular domain X of R2, and n is the unit

outward normal vector to the boundary oX.
In Section 2, we describe our fictitious domain method and present energy decay results. In Sections 3

and 4, we describe a fully conforming approach and a mixed finite element approach, respectively, for the

numerical solution of the scattering problem (3). In both cases, we will use finite elements for spatial

discretization and finite differences for the temporal discretizations. The main advantage of the fictitious

domain method is that the discretization of the fictitious domain is independent of the geometry of the

obstacle, hence we can use uniform meshes in our discretizations. Section 5 discusses the iterative solution
of the resulting equations. In Section 6, we perform stability analyses on the methods described in Sections

3 and 4 via the definition of discrete energies and energy decay results. These analyses demonstrate another

important aspect of our fictitious domain method, namely the independence of the stability condition

(CFL) on the presence (or absence) of obstacles. In Section 7, we describe an operator splitting scheme

for the numerical solution of problem (3), which decouples the operator that propagates the wave from

the operator that enforces the Dirichlet condition on the boundary of the obstacle. The main idea behind

such a splitting is that each subproblem in the full scheme corresponds to only one operator and hence is

quite trivial to solve. This allows us to use different discretizations for the different subproblems [19,20].
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We also show, via numerical examples, that the operator splitting scheme performs as well as the scheme

without splitting.

We would like to study problem (3, i, iv) with the constraint (3, ii) in the case of an unbounded exterior

domain, i.e., in R2 n �x, instead of a finite domain X n �x. One of the ways of simulating the scattering prob-

lem in an unbounded domain is to impose an absorbing boundary condition on the boundary of the trun-
cated domain X. Hence, we consider a finite domain X, and we impose a first-order absorbing boundary

condition (3, iii) on the (artificial) boundary C. In Section 8, we will construct a more accurate technique

called a perfectly matched layer method to simulate such unbounded wave propagation problems. In Sec-

tion 9, we perform numerical results to validate the different models presented.

One of the methods used to solve time dependent problems of scattering by an obstacle, such as (3), is the

finite difference method, which uses a rectangular grid, an explicit scheme in time and approximates the

obstacle in a staircase fashion as shown in Fig. 2. In this figure the scattering obstacle is a disk, and is

approximated by another object as shown. The finite difference method is computationally easy to imple-
ment, but its staircase approximation is not accurate. In Section 10 we will show, via a 1D analysis, that our

distributed Lagrange multiplier based fictitious domain method is a much more accurate and efficient

method for solving time dependent problems like (3). We will also demonstrate that the distributed multi-

plier approach has certain desirable properties which are lacking in a boundary multiplier approach [13,15]

for the same problem.
2. A fictitious domain formulation for the wave problem

In this section, we describe a distributed Lagrange multiplier based fictitious domain method to solve the

time dependent scattering problem (3). The idea behind our fictitious domain method is to extend the solu-

tion U of problem (3) inside the obstacle x, and solve the wave equation in the entire domain X, which has a

simple shape like a square or rectangle [13–16]. The Dirichlet condition on ox, (3, ii), is enforced via the

introduction of a distributed Lagrange multiplier on the domain x. In [13,15] a boundary multiplier

fictitious domain method is introduced for the wave equation and for Maxwell�s equations. Distributed

multiplier based fictitious domain methods have been used for the numerical solution of elliptic problems
[10], for the Stokes problem [21] and for particulate flows in [7,22]. Thus, this paper extends the applicabil-

ity of this approach to wave propagation problems.
Fig. 2. A staircase approximation (highlighted nodal points) to a scattering disk.
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Let g be an H1-extension of G on x in (3, ii). Using a distributed Lagrange multiplier approach problem

(3) is equivalent, at least formally, to the following variational one:

Find {/(t),k(t)} 2 H1(X) · L2(x) such that
ðiÞ 1

c2

Z
X

o2/
ot2

wdxþ
Z

X
r/ � rwdxþ 1

c

Z
C

o/
ot

wdCþ
Z
x
kwdx ¼ 0 8w 2 H 1ðXÞ;

ðiiÞ
Z
x
ð/� gÞldx ¼ 0 8l 2 L2ðxÞ;

ðiiiÞ /ð0Þ ¼ /0;
o/
ot

ð0Þ ¼ /1;

ð4Þ
in the sense that
/ ¼
U on X n �x;

G on ox:

�
ð5Þ
The function /0 is chosen to be an H1-extension of U0, and /1 to be at least an L2-extension of U1.

Equivalently, we can construct another fictitious domain method for the wave problem (3) by writing it

in first-order form. To this end let us define the time derivative u and the gradient p as
u ¼ o/
ot

; p ¼ r/: ð6Þ
Rewriting the wave equation as a system of first-order PDE�s by the use of the variables u and p, we con-

struct the following fictitious domain formulation of the wave problem as

Find {/(t),u(t),p(t),k(t)} 2 H1(X) · H1(X) · [L2 (X)]2 · L2(x) such that:
ðiÞ o/
ot

� u ¼ 0;

ðiiÞ 1

c2

Z
X

ou
ot

wdxþ
Z

X
p � rwdxþ 1

c

Z
C
uwdCþ

Z
x
kwdx ¼ 0 8w 2 H 1ðXÞ;

ðiiiÞ
Z

X

op

ot
� qdx�

Z
X
ru � qdx ¼ 0 8q 2 ½L2ðXÞ�2;

ðivÞ
Z

x
ðu� og

ot
Þldx ¼ 0 8l 2 L2ðxÞ;

ðvÞ /ð0Þ ¼ /0; uð0Þ ¼ /1; pð0Þ ¼ r/0;

ð7Þ
in a similar sense to (5). We note that the Dirichlet boundary condition is imposed on u and not on / as in

(4). Also, (7, i) is posed in a strong sense as / and u are in the same space. One of the advantages of con-

sidering a mixed formulation of the wave equation is the ease of constructing a perfectly matched layer
(PML) model for the absorption of outgoing waves. PML model�s have been shown to provide excellent

absorbing capabilities for wave problems. Another advantage of such a formulation is that we can obtain

information about the gradient directly. In the numerical approximation of formulation (7) we will employ

a discretization in which the degrees of freedom for u and p are staggered in space and time as in the FDTD

scheme that is very popular for Maxwell�s equations [23,24].
2.1. Energy decay

In this section, we derive energy identities from the variational formulations (4) and (7). The energy iden-

tities presented below guarantee the well-posedness of the problems and the stability of the solutions.
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Theorem 1. Let us assume that g = 0 in (4, ii). Then, system (4) verifies the energy identity
d

dt
EC ¼ � 1

c
o/
ot

���� ����2
L2ðCÞ

; ð8Þ
where the energy EC is defined as
EC ¼ 1

2

1

c2
o/
ot

���� ����2
L2ðXÞ

þ r/k k2L2ðXÞ

( )
; ð9Þ
with k � k2L2ðCÞ ¼
R
Cj � j

2
dC, and k � k2L2ðXÞ ¼

R
Xj � j

2
dx. Thus, (8) implies that the energy does not grow over time,

i.e.
ECðtÞ 6 ECð0Þ 8t > 0: ð10Þ

Eq. (8) implies that there is no dissipation of the waves in the domain X. This is the principle of conservation of

energy for the wave equation.

Proof. Let us take w ¼ o/
ot in (4, i). We obtain
1

2

d

dt
1

c2
o/
ot

���� ����2
L2ðXÞ

þ r/k k2L2ðXÞ

( )
þ 1

c

Z
C

o/
ot

���� ����2dCþ
Z
x
k
o/
ot

dx ¼ 0: ð11Þ
From (4, ii) with g = 0, by differentiating with respect to time and then choosing l = k, we have
Z
x

o/
ot

kdx ¼ 0: ð12Þ
Substituting (12) in (11), and using the definition (9) gives us (8). h

Theorem 2. Let us assume that g = 0 in (7, iv). Then, system (7) verifies the energy identity
d

dt
EM ¼ � 1

c
uk k2L2ðCÞ; ð13Þ
where the energy EM is defined as
EM ¼ 1

2

1

c2
uk k2L2ðXÞ þ pk k2L2ðXÞ

� �
: ð14Þ
As before, (13) implies that the energy does not grow over time, i.e.
EMðtÞ 6 EMð0Þ 8t > 0: ð15Þ
Proof. Let us take w = u in (7, ii), and q = p in (7, iii), and add the two resulting equations. This

gives us
1

2

d

dt
1

c2
uk k2L2ðXÞ þ pk k2L2ðXÞ

� �
þ 1

c

Z
C

uk j2dCþ
Z
x
kudx ¼ 0: ð16Þ
From (7, iv), with g = 0, choosing l = k we have
Z
x
ukdx ¼ 0: ð17Þ
Substituting (17) in (16), and using the definition (14) gives us (13). h
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3. A fully conforming method for the numerical solution of the wave problem

We will use finite elements in space and finite differences in time for the numerical approximations of

both (4) and (7). As mentioned in Section 1, the advantage of the fictitious domain formulation is that

we can use uniform meshes to discretize the problems. In the following subsections we present details
regarding the numerical approximation of problem (4).

3.1. Time discretization

We will use a centered finite difference scheme for the time discretization of the wave problem. On the

interval [0,T], let Dt = T/N be the time step, where N 2 N. Define /k � /(kDt) and denote tk = kDt, for
k 2 Z.

For n = 0,1, . . .,N � 1, on the interval (tn,tn+1), given /n,/n� 1 we will solve the problem:
Find (/n+1,kn+1) 2 H1(X) · L2(x) such that
ðiÞ 1

c2

Z
X

/nþ1 � 2/n þ /n�1

Dt2
wdxþ

Z
X
r/n � rwdxþ

Z
x
knþ1wdx

þ 1

c

Z
C

/nþ1 � /n�1

2Dt
wdC ¼ 0 8w 2 H 1ðXÞ;

ðiiÞ
Z

x
ð/nþ1 � gnþ1Þldx ¼ 0 8l 2 L2ðxÞ;

ðiiiÞ /0 ¼ /0; /1 ¼ /�1 þ 2Dt/1:

ð18Þ
3.2. Finite element approximation of the wave problem

This is one of the most important sections in this paper as it describes how the Dirichlet boundary con-

dition is numerically enforced. We divide X into elementary rectangles, and consider Th to be a uniform

mesh with elements {K} of edge length h. We define the finite dimensional space
Vh ¼ vhjvh 2 C0ðXÞ; vhjK 2 Q1 8K 2 Th

� �
; ð19Þ
which approximates H1(X). In (19), the space Q1 is defined as Q1 = P11, where, for k1; k2 2 N [ f0g
Pk1k2 ¼ pðx1; x2Þjpðx1; x2Þ ¼
X

06i6k1

X
06j6k2

aijxi1x
j
2; aij 2 R

( )
: ð20Þ
Thus, P11 is the space of the bilinear functions of two variables, and Vh is the space of continuous piecewise

bilinear functions. Since / 2 H1(X) (which is its natural space), we will choose the space Vh for the finite

element approximation /h of /.
We will also use mass-lumping for the calculation of the integrals
Z

X
vhwh dx ¼

X
K2Th

Z
K
vhwh dx 8vh;wh 2 Vh; ð21Þ
due to which we obtain a diagonal mass matrix leading to an explicit scheme in time. Similarly, we use

mass-lumping to calculate the boundary integral �CvhwhdC.
Let the set of mesh points on X be defined as
Rh ¼ P jP 2 X; P is a vertex of Th

� �
: ð22Þ
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Next, we define the set
Fig. 3.

fictitio

disk to
R�x
h ¼ P jP 2 �x; dðP ; oxÞ P hf g [Discrete set of points belonging to ox; ð23Þ
where d(P,ox) is the distance of the point P from the boundary ox. The points on ox are typically chosen

so that their distance is of the order of h. See Fig. 3. Using the sets defined above, we now define the set Kh

of the Lagrange multipliers by
Kh ¼ lhjlh ¼
X
P2R�x

h

lPvP ; lP 2 R

8<:
9=;; ð24Þ
with vP the characteristic function of the elementary square of center P and edge length h; we clearly have

lh(P) = lP. We approximate the integrals involving the distributed multiplier by
Z
x
lhvh dx � h2

X
P2R�x

h

lhðP ÞvhðP Þ 8vh 2 Vh; 8lh 2 Kh: ð25Þ
Fig. 3 illustrates the degrees of freedom for the solution / (left), and a choice for the set R�x
h in the case of a

scattering disk. In this figure, the ratio of the distance between points on the circle, denoted by hox, to the

mesh step size h is about 1.3. We will call this ratio as the mesh ratio. In numerical experiments, good results
are observed when the mesh ratio is approximately 1.5 [25].

Using the above definitions, a fully discretized scheme for the wave problem is given by the following

fully discrete variational formulation.

� Scheme FDDM:

Find ð/nþ1
h ; knþ1

h Þ 2 Vh � Kh such that:
ðiÞ 1

c2

Z
X

/nþ1
h � 2/n

h þ /n�1
h

Dt2
wh dxþ

Z
X
r/n

h � rwh dxþ
1

c

Z
C

/nþ1
h � /n�1

h

2Dt
wh dC

þ
Z
x
knþ1
h wh dx ¼ 0 8wh 2 Vh;

ðiiÞ
Z
x
ð/nþ1

h � gnþ1Þlh dx ¼ 0 8lh 2 Kh;

ðiiiÞ /0
h ¼ /0; /1

h ¼ /�1
h þ 2Dt/1:

ð26Þ
We will discuss the iterative solution of (26) in Section 5.
The degrees of freedom for the solution / (left), and the degrees of freedom, R�x
h , for the Lagrange multiplier k (right) in the

us domain method for the case of a scattering disk. The mesh ratio, i.e., the ratio of the step size chosen on the boundary of the

the mesh step size, is about 1.3.
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4. A mixed finite element method for the numerical solution of the wave problem

In this section, we present a mixed finite element method for approximating the variational formulation

(7). The approximation of /,u and k are carried out as detailed in the previous section. Since /h 2 Q1 on

any K 2 Th, we will choose a finite element space Ph for the approximation of p such that the reference
space for this approximation is
P 01 � P 10 � rQ1; ð27Þ
in order that we can construct the space Ph such that
rVh � Ph: ð28Þ
By satisfying (28), we ensure the validity of an inf–sup condition related to the inner productR
Xqh � rwh dx 8qh 2 Ph; 8wh 2 Vh (see sufficient conditions for convergence of mixed methods discussed

in [26]). Thus, the approximation space Ph, for the approximation of p, is chosen to be
Ph ¼ q 2 ½L2ðXÞ�2j8K 2 Th; qjK 2 P 01 � P 10

n o
: ð29Þ
This space of linear edge elements for the gradient can be seen as the lowest order Nédélec space in two-

dimensions (Nédélec�s results are for 3D). The degrees of freedom for the approximations /h, uh and of

ph = (px, h,py, h)
T are staggered in both time and space as shown in Fig. 4. The degrees of freedom for

px,h and py,h are at the midpoints of edges parallel to the x-axis and y-axis, respectively.

As before, we will use a centered finite difference scheme for the time discretization of the wave problem.

On the interval [0,T], let Dt = T/N be the time step, where N 2 N. Define tj = jDt, and /j � /(tj), where j = k

or j = k + 1/2, for k 2 N.

� Scheme MDM:

Find ð/nþ1
h ; unþ1

h ; p
nþ1=2
h ; knþ1

h Þ 2 Vh � Vh � Ph � Kh such that:
Fig. 4. A sample domain element K.
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ðiÞ /nþ1
h � /n

h

Dt
¼ unh;

ðiiÞ
Z
X

p
nþ1=2
h � p

n�1=2
h

Dt
qh dx�

Z
X
qh � runh dx ¼ 0 8qh 2 Ph;

ðiiiÞ 1

c2

Z
X

unþ1
h � unh
Dt

wh dxþ
Z
X
p
nþ1=2
h � rwh dxþ

1

c

Z
C

unþ1
h þ unh

2
wh dC

þ
Z
x
knþ1
h wh dx ¼ 0 8wh 2 Vh;

ðivÞ
Z
x
ðunþ1

h � gnþ1Þlh dx ¼ 0 8lh 2 Kh;

ðvÞ /0
h ¼ /0; u0h ¼ /1; p

�1=2
h ¼ r/0 �

Dt
2
r/1:

ð30Þ
As done in Section 3.2, we will mass-lump the integrals involved above. Since we are using uniform meshes

this should not pose any difficulties. In the numerical solution of (30) we will solve for /nþ1
h from (30, i),

then we will solve for p
nþ1=2
h from (30, ii). Both these steps are explicit in time. We will then solve (30,

iii) and (30, iv) iteratively as described in Section 5.
5. Iterative solution of the discrete problem

For the solution of the system (26, i, ii) or (30, iii, iv) at each time step, we have to solve a system of linear

equations of the saddle point form
Dhw
nþ1
h þ BT

h k
nþ1
h ¼ a;

Bhw
nþ1
h ¼ b;

ð31Þ
where wnþ1
h ¼ /nþ1

h in (26) and wnþ1
h ¼ unþ1

h in (30). Also Dh 2 RN�N is a diagonal mass matrix, and

Bh 2 RM�N ðM 	 NÞ. We use the Schur Complement of the system (31) that is, we solve
BhD�1
h BT

h

� �
knþ1
h ¼ BhD�1

h a� b; ð32Þ
for knþ1
h . We do this by using a conjugate gradient algorithm in the form given by Glowinski and LeTallec

[27].

We note that the matrix BhD�1
h BT

h is symmetric and positive definite. This property is related to a uniform

discrete inf–sup condition associated with the integral �xvldx "v 2 Vh, "l 2 Kh.

As mentioned in Section 1, we again note that the mesh grid in the fictitious domain and the degrees

of freedom on the boundary of the obstacle are chosen independently of each other, except that the

boundary mesh size is larger than the mesh size in the domain. In [25], the authors derive error esti-
mates for a fictitious domain method for elliptic problems with non-homogeneous boundary conditions,

provided that the ratio between the boundary mesh size and the mesh size in the domain, i.e., what we

call the mesh ratio hox/h, is approximately two or three. The crucial step is the proof of a uniform dis-

crete inf–sup condition via the construction of a suitable restriction operator. However, this restriction

on the mesh ratio is only sufficient and good numerical results are obtained when this ratio is approx-

imately 1.5 as is demonstrated by the numerical results presented in [16,8] and as will be seen in this

paper.
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6. Decay of discrete energies and stability analysis

Analogously to the continuous case, we derive discrete energy identities based on the discrete variational

formulations (26) and (30). Using these identities we show that the respective fictitious domain formula-

tions are stable, with the Courant–Friedrichs–Lewy (CFL) stability condition being the same as in the case
of the problem without an obstacle. We will assume that g = 0 in (26, ii) and in (30, iv). We define the bilin-

ear form
að/h;whÞ ¼
Z
X
r/h � rwh dx 8ð/h;whÞ 2 Vh � Vh; ð33Þ
and the operator Ah : Vh ! V0
h by
ðAh/h;whÞL2ðXÞ ¼ að/h;whÞ: ð34Þ
Let I be the identity operator on Vh.

Theorem 3. If the CFL condition cDt 6 h=
ffiffiffi
2

p
is satisfied (in 2D), then the operator
Sh ¼ I � c2Dt2

4
Ah; ð35Þ
defines a positive quadratic form, the expression
E
nþ1=2
h ¼ 1

2

1

c2
/nþ1

h � /n
h

Dt
;Sh

/nþ1
h � /n

h

Dt


 �
þ r /nþ1

h þ /n
h

2


 ����� ����2
( )

; ð36Þ
defines a discrete energy, and system (26) verifies the energy identity
E
nþ1=2
h ¼ E

n�1=2
h � Dt

c
/nþ1

h � /n�1
h

2Dt

���� ����2
L2ðCÞ

8n 2 N; n P 0: ð37Þ
Thus, (37) implies that the discrete energy does not grow over time, i.e.
E
nþ1=2
h 6 E

n�1=2
h 8n P 0: ð38Þ
Proof. Using the definition of the operator Ah we can rewrite the discrete energy as
E
nþ1=2
h ¼ 1

2

1

c2
/nþ1

h � /n
h

Dt

���� ����2 þ Z
X
r/nþ1

h � r/n
h dx

( )
: ð39Þ
From (26, i) taking wh ¼
/nþ1
h �/n�1

h
2Dt , and using the definition (36) we obtain
E
nþ1=2
h � E

n�1=2
h

Dt
þ 1

2Dt

Z
x
knþ1
h /nþ1

h � /n�1
h

� �
dx ¼ � 1

c
/nþ1

h � /n�1
h

2Dt

���� ����2
L2ðCÞ

: ð40Þ
Next, from (26, ii) by taking lh ¼ knþ1
h , and lh ¼ knþ3

h we have, respectively
Z
x
knþ1
h /nþ1

h dx ¼ 0 and

Z
x
knþ1
h /n�1

h dx ¼ 0: ð41Þ
Substituting (41) in (40) we obtain the energy identity (37).

It remains to show that the operator Sh defines a positive quadratic form under the given CFL

condition. In two dimensions we have [28]
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supwh2Vh

h2ðAhwh;whÞL2ðXÞ
4ðwh;whÞL2ðXÞ

< 2; ð42Þ
which along with the CFL condition implies that
ðwh;ShwhÞL2ðXÞ ¼ ðwh; ðI �
c2Dt2

4
AhÞwhÞL2ðXÞ > 0 8wh 2 Vh n f0g: ð43Þ
Eq. (43) implies that the operator Sh is positive definite. Thus, the CFL condition assures the stability of

the scheme (26). We note that the CFL condition is not affected by the presence of the obstacle, i.e., the

stability condition for the distributed multiplier based fictitious domain method is the same as that for

the finite difference method. This is also true in the case of a boundary multiplier based fictitious domain
method, as is noted in [14]. h

Theorem 4. If the CFL condition, cDt 6 h=
ffiffiffi
2

p
is satisfied, then the operator Sh defined in (35) defines a posi-

tive quadratic form, the expression
E
nþ1=2
h ¼ 1

2

1

c2
unþ1
h ;Shunþ1

h

� �
L2ðXÞ þ

p
nþ1=2
h þ p

n�1=2
h

2

 !�����
�����
2

L2ðXÞ

8<:
9=; ð44Þ
defines a discrete energy, and system (30) verifies the energy identity
E
nþ1=2
h ¼ E

n�1=2
h � Dt

c
unþ1
h þ unh

2

���� ����2
L2ðCÞ

8n 2 N; n P 0: ð45Þ
Thus, (45) implies that the discrete energy does not grow over time, i.e.
E
nþ1=2
h 6 E

n�1=2
h 8n P 0: ð46Þ
Proof. Let w ¼ unþ1
h þunh

2
in (30, iii). Simplifying, we obtain
1

2c2Dt
unþ1
h

�� ��2 � unh
�� ��2� 

þ
Z
X
p
nþ1=2
h � r unþ1

h þ unh
2


 �
dx

¼ � 1

c

Z
C

unþ1
h þ unh

2

���� ����2dC�
Z
x
knþ1
h

unþ1
h þ unh

2


 �
dx: ð47Þ
From (30, ii), we take q ¼ p
nþ1=2
h to get
Z

X

p
nþ1=2
h � p

n�1=2
h

Dt
� pnþ1=2

h dx�
Z
X
runh � p

nþ1=2
h dx ¼ 0: ð48Þ
Again from (30, ii) replacing n by n + 1 and q ¼ p
nþ1=2
h we get
Z

X

p
nþ3=2
h � p

nþ1=2
h

Dt
� pnþ1=2

h dx�
Z
X
runþ1

h � pnþ1=2
h dx ¼ 0: ð49Þ
Adding Eqs. (48) and (49) and substituting the result in (47) we have
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1

2Dt
1

c2
unþ1
h

�� ��2 � unh
�� ��2� 

þ p
nþ3=2
h ; p

nþ1=2
h

� 
� p

nþ1=2
h ; p

n�1=2
h

� � �
¼ � 1

c

Z
C

unþ1
h þ unh

2

���� ����2dC�
Z
x
knþ1
h

unþ1
h þ unh

2


 �
dx: ð50Þ
Next, from (30, iv) by taking lh ¼ knþ1
h , and also lh ¼ knþ2

h we have, respectively
Z
x
knþ1
h unþ1

h dx ¼ 0 and

Z
x
knþ2
h unþ1

h dx ¼ 0: ð51Þ
This implies that
Z
x
knþ1
h

unh þ unþ1
h

2


 �
dx ¼ 0: ð52Þ
Using the parallelogram law we can write
p
nþ3=2
h ; p

nþ1=2
h

� 
¼ 1

4
p
nþ3=2
h þ p

nþ1=2
h

��� ���2 � 1

4
p
nþ3=2
h � p

nþ1=2
h

��� ���2: ð53Þ
Similarly
p
nþ1=2
h ; p

n�1=2
h

� 
¼ 1

4
p
nþ1=2
h þ p

n�1=2
h

��� ���2 � 1

4
p
nþ1=2
h � p

n�1=2
h

��� ���2: ð54Þ
From (30, ii), since $Vh � Ph, we have with n = n and n = n + 1, respectively
p
nþ1=2
h � p

n�1=2
h ¼ Dtrunh; p

nþ3=2
h � p

nþ1=2
h ¼ Dtrunþ1

h : ð55Þ

Substituting (52)–(55) in (50) and using the definition of the operator Sh we obtain (45). Thus, as in the

previous theorem: under the given CFL condition the operator Sh defines a positive quadratic form,

and the CFL condition assures the stability of the scheme (30). h
7. An operator splitting scheme with mixed finite elements for the numerical solution of the wave problem

In this section, we describe a symmetrized operator splitting scheme for the numerical solution of the

wave problem (3). The idea behind operator splitting, in the case of the scattering problem, is to decou-

ple the operator that propagates the wave from the operator that enforces the Dirichlet condition on the

boundary of the obstacle x. On a time interval of length Dt, we can construct a two-step splitting

scheme by separating the solution of (3) into two steps (subproblems). In one step of time length Dt
we will propagate the wave, i.e., solve the wave equation in the whole domain X, and in the second step

of length Dt we will enforce the Dirichlet condition on ox. The communication between the two steps is

via the initial condition. The solution of one subproblem is input as initial conditions to the next
subproblem.

The two-step schemes are usually first-order accurate in time, where as a symmetrized version of such

schemes gives second-order temporal accuracy, even if the sub-operators involved do not commute [29].

Thus, in order to obtain second-order accurate schemes in time we will construct a (Strang) symmetrization

of the two-step scheme outlined above. We can do so in two ways. We perform one of the two steps men-

tioned above on two intervals of length Dt/2 separated by the other step performed on an interval of length

Dt. This gives rise to two different symmetrized operator splitting schemes.
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1. Symmetrized scheme 1:

� Propagate the wave on an interval of length Dt/2.
� Enforce the Dirichlet condition on ox on an interval of length Dt.
� Propagate the wave on an interval of length Dt/2.

2. Symmetrized scheme 2:
� Enforce the Dirichlet condition on ox on an interval of length Dt/2.
� Propagate the wave on an interval of length Dt.
� Enforce the Dirichlet condition on ox on an interval of length Dt/2.

Again, the communication between the different subproblems of either scheme is via the initial con-

ditions as explained above. The main advantage of operator splitting is that each individual subproblem

involves a single operator and is trivial to solve. Also, we can use different discretizations for the

numerical implementation of the different subproblems. In [19,20], we have used the fully conforming
approach of Section 4 to discretize the subproblems responsible for enforcing the Dirichlet condition on
�x, and the mixed finite element approach for wave propagation. In this paper, we will use the mixed

finite element approach for all the subproblems. In this section, we will demonstrate the numerical

implementation of scheme 2. This operator splitting scheme is based on the mixed formulation (30).

Let us define vx to be the characteristic function of the domainx. On the interval (tn,tn+1), given ð/n
h; u

n
h; p

n
hÞ,

we solve three subproblems to obtain ð/nþ1
h ; unþ1

h ; pnþ1
h Þ as follows.

� Operator splitting scheme SFDDM:

For n = 0,1,2, . . .,N � 1, solve:
� SUBPROBLEM (1)m: Find ð/nþ1=2

h ; unþ1=2
h ; p

nþ1=2
h ; knþ1=2

h Þ such that
/nþ1=2
h ¼ /n

h;

p
nþ1=2
h ¼ pnh;

1

c2

Z
X

unþ1=2
h � unh
Dt=2

wh dxþ
Z

xknþ1=2
h wh dx ¼ 0 8wh 2 Vh;Z

x
unþ1=2
h � ognþ1=2

ot


 �
lh dx ¼ 0 8lh 2 Kh:

ð56Þ
� SUBPROBLEM (2)m: Find ð~/nþ1

h ; ~unþ1
h ; ~pnþ1

h Þ such that
~/
nþ1

h � /nþ1=2
h

Dt
¼ unh;Z

X

~pnþ1
h � p

nþ1=2
h

Dt
qh dx�

Z
X
q � runþ1=2

h dx ¼ 0 8qh 2 Ph;

1

c2

Z
X

~unþ1
h � unþ1=2

h

Dt
wh dxþ

Z
X

~pnþ1
h � rwh dxþ

1

c

Z
C

~unþ1
h þ unþ1=2

h

2
wh dC ¼ 0 8wh 2 Vh:

ð57Þ
� SUBPROBLEM (3)m: Find ð/nþ1
h ; unþ1

h ; pnþ1
h ; knþ1

h Þ such that
/nþ1
h ¼ ~/

nþ1

h ;

pnþ1
h ¼ ~pnþ1

h ;

1

c2

Z
X

unþ1
h � ~unþ1

h

Dt=2
wh dxþ

Z
x
knþ1
h wh dx ¼ 0 8wh 2 Vh;Z

x
unþ1
h � ognþ1

ot


 �
lh dx ¼ 0 8lh 2 Kh:

ð58Þ
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Subproblems (1)m and (3)m enforce the Dirichlet boundary condition on �x, each on an interval of length Dt/
2. In both these steps / and p are kept constant. Subproblem (2)m is pure wave propagation. The Dirichlet

boundary condition is absent in this step. In the scheme presented above, we have retained a first-order

absorbing boundary condition in subproblem (2)m. We will replace this subproblem with one that uses per-

fectly matched layers, which are developed in Section 8, to perform numerical experiments in Section 9.
8. Construction of a PML model in 2D

In this section, we construct a PML model to replace the first-order absorbing boundary condition Eq.

(3, iii). We will start with a first-order system defined in the space X = [�1, 0]2, and we will construct a

PML model in the positive half space in R2. The construction of the PML is based on a change of variables

approach in the complex plane that was used in [30] for constructing PML�s for Maxwell�s equations. The
construction in this section is closely related to that in [31]. In this and succeeding sections, we have used q
to denote the frequency as x denotes the scattering obstacle. Consider the scalar wave equation in X written

as a system of first-order equations
ðiÞ 1

c2
ou
ot

�r � p ¼ 0;

ðiiÞ op

ot
�ru ¼ 0:

ð59Þ
Applying the Fourier transform to (59, i) and (59, ii) (replace o
ot by �iq), we have
ðiÞ �iq
c2

û�r � p̂ ¼ 0;

ðiiÞ � iqp̂�rû ¼ 0:

ð60Þ
Here, ŵ is the Fourier transform of w for all field variables w. With p̂ ¼ ðp̂x; p̂yÞ
T
we will rewrite (60) in sca-

lar form as
ðiÞ �iq
c2

û� op̂x
ox

�
op̂y
oy

¼ 0;

ðiiÞ � iqp̂x �
oû
ox

¼ 0;

ðiiiÞ � iqp̂y �
oû
oy

¼ 0:

ð61Þ
Next, we construct the change of variables
~x ¼
x; x < 0;

xþ i
q

R x
0
rxðsÞds; otherwise;

(
ð62Þ
and
~y ¼
y; y < 0;

y þ i
q

R y
0
ryðsÞds; otherwise;

(
ð63Þ
with rx(0) = ry(0) = 0. Using (62) and (63), we extend the first-order system in (61) to the complex plane as
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ðiÞ �iq
c2

û� op̂x
o~x

�
op̂y
o~y

¼ 0;

ðiiÞ � iqp̂x �
oû
o~x

¼ 0;

ðiiiÞ � iqp̂y �
oû
o~y

¼ 0:

ð64Þ
Next, we use the chain rule to replace the derivatives in ~x; ~y by derivatives in x, y as follows. We have for

x > 0, y > 0, respectively
dx
d~x

¼ 1

1þ ðirxÞ=q
;

dy
d~y

¼ 1

1þ ðiryÞ=q
: ð65Þ
Thus, from (64) and (65) we have
ðiÞ �iq
c2

û� 1

1þ ðirxÞ=q
op̂x
ox

� 1

1þ ðiryÞ=q
op̂y
oy

¼ 0;

ðiiÞ � iqp̂x �
1

1þ ðirxÞ=q
oû
ox

¼ 0;

ðiiiÞ � iqp̂y �
1

1þ ðiryÞ=q
oû
oy

¼ 0:

ð66Þ
Next, we define the variables
ðiÞ ~px ¼ 1þ ðiryÞ=q
� �

p̂x;

ðiiÞ ~py ¼ 1þ ðirxÞ=qð Þp̂y ;
ðiiiÞ v̂ ¼ 1þ ðiryÞ=q

� �
û;

ðivÞ q̂x ¼
1

1þ ðiryÞ=q
~px;

ðvÞ q̂y ¼
1

1þ ðirxÞ=q
~py :

ð67Þ
We use p to be the inverse Fourier transform of ~p as p̂ coincides with ~p in the domain X. Let q = (qx,qy)
T

and define
Sxy ¼
rx 0

0 ry


 �
; Syx ¼

ry 0

0 rx


 �
: ð68Þ
Using the above definitions and taking the inverse Fourier transform of the resulting equations (replace �iq
by o/ot), we obtain a two-dimensional PML model for the wave equation in the time domain as
ðiÞ oq

ot
þ Sxyq ¼ ru;

ðiiÞ op

ot
¼ oq

ot
þ Syxq;

ðiiiÞ ov
ot

þ rxv� c2r � p ¼ 0;

ðivÞ ou
ot

þ ryu ¼ ov
ot

;

ð69Þ
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in which we must solve for (u,v,p,q). Our PML formulation is different from the system constructed in [31]

as we retain a first-order system of equations. Thus, we have to solve for the variables q, p, v and u in the

PML system. As in [31] we use the definition of rl, l = 1,2 as
rl ¼
0 if x 6 0;

rmax
x
d

� �2
if x > 0;

(
ð70Þ
where rmax ¼ 3c
2d logðRÞ, d being the thickness of the PML, c the speed of propagation, and R = 103. We have

used PML�s which are one wavelength thick in our numerical experiments.

8.1. A variational formulation of the PML system

We construct a variational formulation of the time dependent PML system (69) on similar lines as was

done for (7).

Find fvðtÞ; uðtÞ; qðtÞ; pðtÞg 2 H 1
0ðXÞ � H 1

0ðXÞ � ½L2ðXÞ�2 � ½L2ðXÞ�2 such that:
ðiÞ
Z
X

oq

ot
� rdxþ

Z
X
Sxyq � rdx ¼

Z
X
ru � rdx 8r 2 ½L2ðXÞ�2;

ðiiÞ
Z
X

op

ot
� rdx ¼

Z
X

oq

ot
� rdxþ

Z
X
Syxq � rdx 8r 2 ½L2ðXÞ�2;

ðiiiÞ
Z
X

ov
ot

wdxþ
Z
x
rxvwdxþ c2

Z
X
rw � pdx ¼ 0 8w 2 H 1

0ðXÞ;

ðivÞ
Z
X

ou
ot

wdxþ
Z
X
ryuwdx ¼

Z
X

ov
ot

wdx 8w 2 H 1
0ðXÞ:

ð71Þ
The discrete formulation of (71) uses the mixed finite element approach of Section 4. The degrees of free-

dom for ph and qh are at the midpoints of edges, whereas the degrees of freedom for uh are vh are at the

vertices of the rectangular elements as shown in Fig. 4. We use central differences in time with the degrees

of freedom staggered in time (and space) as before. We note that the PML is terminated by the Dirichlet

condition u = 0. The first-order system along with the first-order absorbing boundary condition in SUB-
PROBLEM (2)m in the operator spitting scheme SFDDM of Section 7 is replaced by a discrete version

of the PML formulation (71).
9. Numerical examples

9.1. Scattering by a disk

We consider the scattering of the harmonic planar waves e�i(qt�k Æx) by a perfectly reflecting disk

whose radius is 0.25 m. The disc is located at the center of the domain [0,3.5] · [0,3.5]. The fre-

quency f is 0.6 GHz, and the wavelength L is 0.5 m. The wavenumber is denoted by k = (kx,ky).

The angular frequency is q = 2pf. The wave illuminates x from the left and propagates horizontally.

The distance from the disk to the absorbing boundary is three wavelengths. We have used a rect-

angular mesh consisting of 113 · 113 nodes, with the mesh step size h = 0.5/16 m. The time step is

Dt = 2p/(25q). Thus, the Courant number is ðcDtÞ=h ¼ 0:64 < 1=
ffiffiffi
2

p
. In all our experiments we have

kept the mesh ratio to be 2. For this test problem the exact solution is known when C is located at
infinity. Let the circle be centered at the origin, with radius r0. The analytic solution for the Dirich-

let problem is given by
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/ðr; hÞ ¼ �
X
n2Z

ijnjJ jnjðqr0Þeinh
H ð1Þ

n ðqrÞ
H ð1Þ

n ðqr0Þ
8r 2 ½r0;1Þ; 8h 2 ½0; 2p�; ð72Þ
where H ð1Þ
n is the Hankel function of the first kind and Jn is the Bessel function of order n.

We present plots of the real part of the exact solution (72), and the real part of the solution computed
using the operator splitting scheme of Section 7, with the PML model of Section 8, for the problem of scat-

tering by a disk. The computed solution is time integrated for 175 time steps, i.e., until t = 7L/c = 7/f. In

Fig. 5, a full view of the exact solution and the computed solution for a discretization with 16 nodes per

wavelength is presented. The figures show a remarkable agreement, considering that the mesh is not locally

modified to fit ox, as some other fictitious domain methods do. Fig. 6 presents the error, with respect to the

exact solution at points on the line x = 1.75 (left), and with respect to the exact solution at points on the line

y = 1.75 (right). In both cases the error seems to be decreasing as OðhÞ.
We calculate the relative error (RE) of our computed solution /C, with respect to the exact solution /E,

where
RE ¼
/C � /Ek kL2ðXÞ

/Ek kL2ðXÞ
: ð73Þ
Fig. 5. Real parts of the exact solution (right) and the solution computed with the operator splitting scheme (left).

Error in the real parts of the computed solutions on the half-line containing the center of x and parallel (right), respectively,

dicular (left) to the incidence direction for different values of h.
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In Table 1, we present relative errors for different discretizations, for the operator splitting scheme SFDDM

of Section 7 combined with the PML of Section 8, and the mixed finite element scheme (MDM) of Section 4

combined with the PML of Section 8. As can be seen from Table 1, both methods introduce the same rel-

ative errors. Thus, the operator splitting does not seem to produce any additional error. The ratios of errors

for successive discretizations starts out to be 4 for both schemes. But asymptotically these ratios approach 2
indicating OðhÞ spatial accuracy of both schemes.

We have not presented results for the fully conforming approach of Section 3 as one cannot see any

convergence to the exact solution for this scheme. The ratios between relative errors for successive discret-

izations is between 1 and 2 for this case. In [19], we have shown that this is due to the first-order absorbing

boundary condition that is used in the fully conforming approach.

9.2. Scattering by multiple disks

We consider the scattering of the harmonic planar waves e�i(qt�k Æx) by nine perfectly reflecting disks

whose radius is 0.25 m on the domain X = [0,5] · [0, 5]. The frequency is 0.6 GHz, and the wavelength is

0.5 m. The wave illuminates x from the left and propagates horizontally. We have used a rectangular mesh

consisting of 321 · 321 nodes, with the mesh step size h = 0.5/32 m. The time step is Dt = 2p/(50q).
For this test problem the exact solution is not known. We compare our results obtained using the oper-

ator splitting scheme, with a reference solution that is obtained by solving a time harmonic problem in

which the mesh is locally fitted to the boundary of the obstacles [32] leading to Oðh2Þ accurate

discretizations.
The details of the computational domain are shown in Fig. 7. Each disk is one wavelength in diameter.

The distance between two neighboring disks is one wavelength in the x, and/or y direction. We have kept

the (artificial) boundary C at least two and a half wavelengths from each disk. In Fig. 8 (left), we present a

contour plot of the solution at 2000 time steps. We see a very good comparison with the reference solution

shown in Fig. 8 (right). However, the convergence of our solution to the time harmonic solution is slow

because of the presence of multiple obstacles (a non-convex obstacle); nonetheless, our solution compares

very well with the time harmonic solution. In Fig. 9, we compare a slice of the two solutions which is per-

pendicular (right), respectively, parallel (left) to the direction of propagation of the wave. In each case the
comparison is shown at 2000 time steps. The figures demonstrate the convergence of our solution to the

time harmonic reference solution. In Fig. 10, we provide a comparison of the time evolution of the com-

puted solution with the reference solution for 2000 time steps at the point (1.5,2). We calculate the time

evolution for the time harmonic solution U(x,y) by multiplying it with e�iqt, and considering the real part

of this product, i.e., Re(U(x,y) e�iqt). Again, this figure demonstrates the convergence of our solution to the

time harmonic reference solution.

For all the cases presented above the number of iterations needed for convergence in the conjugate

gradient (Uzawa) algorithm of Section 5 were between 11 and 16 for all values of h and Dt.
Table 1

Relative errors for different discretizations for the operator splitting scheme (SFDDM) of Section 7 and the mixed finite element

scheme (MDM) of Section 4

N L/h SFDDM MDM

Error Ratio Error Ratio

1132 16 1.242e � 1 1.235e � 1

2252 32 2.944e � 2 4.22 2.910e � 2 4.24

4492 64 8.727e � 3 3.37 8.626e � 3 3.37

8972 128 3.899e � 3 2.24 3.901e � 3 2.21



Fig. 7. Domain X with nine disks.

Fig. 8. Contour plots of the computed solution after 2000 time steps (left) and the reference solution (right).
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10. A 1D plane wave analysis

In this section, we analyze the distributed multiplier based fictitious domain method for a 1D wave prob-

lem. Based on this analysis we compare our method with two alternate methods that can be used for the

solution of the same problem. The first method is a finite difference scheme which we denote as FDM, that

uses central differences in space and time to discretize the problem on a uniform mesh. The second scheme is

another fictitious domain method that is based on a boundary Lagrange multiplier which we denote as

FDBM. This method was introduced in [13–15].
We consider the 1D wave equation with a Dirichlet boundary condition. The problem is to find U such

that



Fig. 9. Slice of the solution on the line y = 2.5 (right) and the line x = 2.5 (left). RS denotes the reference solution and CS denotes the

computed solution.

Fig. 10. Comparison of the time evolution of the computed solution (- - - - -) with the reference solution (——) for 2000 time steps at the

point (1.5,2).
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1

c2
o2U
ot2

� o2U
ox2

¼ 0; x < xr;

Uðx ¼ xrÞ ¼ 0;

Uðt ¼ 0Þ ¼ U0 2 H 1ðRÞ; U0ðx ¼ xrÞ ¼ 0;

dU
dt

ðt ¼ 0Þ ¼ U1 2 L2ðRÞ;

ð74Þ
where 0 6 xr < 1.

As shown in Fig. 11 the domain x, in our fictitious domain method, for the 1D case is the interval

(xr,1). Thus, in our fictitious domain formulation, the problem is extended to the entire real line R,



Fig. 11. The fictitious domain.
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and the Dirichlet boundary condition, /(xr) = 0, is imposed via the introduction of a distributed Lagrange

multiplier k defined over the domain, �x ¼ ½xr;1Þ.
We will take xr = rh, with 06r < 1. Thus, xr does not coincide with a nodal point unless r = 0. We cal-

culate the mass matrix for the discrete problem by using the trapezoidal rule to obtain a scheme that is

explicit in time. The discrete scheme for our fictitious domain method can be written as:
Find ð/nþ1

h;l ; k
nþ1
h;k Þ such that 8l 2 Z; k ¼ r or k 2 N; k P 2 : /nþ1

h;l 2 R and knþ1
h;k 2 R
ðiÞ
/nþ1

h;l � 2/n
h;l þ /n�1

h;l

c2Dt2
�
/n

h;lþ1 � 2/n
h;l þ /n

h;l�1

h2
þ knþ1

h;r ð1� rÞdl;0 þ rdl;1ð Þ

þ
X

kP2;k2N
knþ1
h;k dl;k ¼ 0 8l 2 Z;

ðiiÞ ð1� rÞ/nþ1
h;0 þ r/nþ1

h;1 ¼ 0;

ðiiiÞ /nþ1
h;l ¼ 0 for l 2 N; l P 2;

ðivÞ /0
h;l ¼ /0;h;l; and

/1
h;l � /�1

h;l

2Dt
¼ /1;h;l 8l 2 Z:

ð75Þ
In the above, dl,k is the Kronecker delta function.

We now perform a plane wave analysis of the different schemes outlined above for the numerical solu-

tion of the 1D wave problem (74). We will calculate the reflection coefficient in each case and compare the

different schemes on this basis.

We first note that the 1D wave equation (74) satisfies a solution of the form
/ðx; tÞ ¼ e�iqt e�ikðx�xrÞ þ Rcont e
ikðx�xrÞ

� �
: ð76Þ
The Dirichlet condition /(x = xr) = 0 implies that the reflection coefficient Rcont is given by
Rcont ¼ �1: ð77Þ

The dispersion relation here is given by q = kc with c being the speed of propagation and k is the wave

number.

In the finite difference scheme (FDM) the Dirichlet boundary condition is moved to the nodal point

x0 = 0. We use centered differences in space and time for this scheme. In this scheme we look for a solution

of the form
/n
h;l ¼ e�iqnDt e�ikhðl�rÞ þ RFDM eikhðl�rÞ� �

if l 6 0: ð78Þ

This gives the superposition of the incident and the reflected waves in the domain l 6 0. Using the condition

/n
h;0 ¼ 0 in (78), we have
RFDM ¼ �e2ihkr ¼ �1� 2ihkr þ Oðh2Þ; ð79Þ

as a series in h. Thus, if r = 0 in (79) then we have RFDM = �1 = Rcont. Otherwise, the numerically reflected

wave in the FDM scheme is identical to the reflected wave in the continuous case with a phase error of

2ihkr. For the FDM as well as for both the fictitious domain methods to be analyzed below the dispersion

relation is given by
sinððqDtÞ=2Þ ¼ g sinððhkÞ=2Þ; ð80Þ
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where g = (cDt)/h is the Courant number. If the CFL condition cDt = h, i.e., g = 1 is satisfied then the dis-

persion relation reduces to that of the continuous case, i.e., q = kc.

In the case of the fictitious domain method with a distributed multiplier we look for a solution of the

form
/n
h;l ¼

e�iqnDt e�ikhðl�rÞ þ RFDDM eikhðl�rÞ� �
if l 6 0;

T FDDM e�iqnDt e�ikhðl�rÞ if l ¼ 1;

0 if l P 2;

8><>: ð81Þ
where TFDDM is the transmission coefficient and
knþ1
h;j ¼

kr e�iqnDt if j ¼ r;

k2 e�iqnDt if j ¼ 2;

0 if j P 3:

8><>: ð82Þ
For this case the reflection coefficient RFDDM is found to be
RFDDM ¼
�n2r ðnð1� rÞ þ rÞ2 þ ð1� rÞ2

� 
ð1� r þ nrÞ2 þ n2ð1� rÞ2

; ð83Þ
with n = eikh. As a series in h we have
RFDDM ¼ �1� 2ikrð1� rÞð2� rÞh
2� 2r þ r2

þ Oðh2Þ: ð84Þ
Thus, if r = 0 then RFDDM = �1 otherwise we have a first-order accurate reflection coefficient for this

scheme. The reflection coefficients in the case of the operator splitting scheme with the distributed multiplier

based fictitious domain method are the same as in (83) and (84).
Finally, we consider a fictitious domain method which utilizes a boundary multiplier. This method was

analyzed in [14,15]. We present here the relevant results. In this case the Dirichlet boundary condition is

imposed at the point xr via the introduction of a (boundary) Lagrange multiplier. We can obtain the dis-

crete scheme for this method from the discrete scheme for the distributed multiplier fictitious domain meth-

od by dropping the Lagrange multiplier terms corresponding to the nodal points xj, j P 2 in (75, i), and by

dropping the Eq. (75, iii). We look for a solution of the form
/n
h;l ¼

e�iqnDt e�ikhðl�rÞ þ RFDBM eikhðl�rÞ� �
if l 6 0;

T FDBM e�iqnDt e�ikhðl�rÞ if l P 1;

(
ð85Þ
and
knþ1
h;r ¼ kr e

�iqnDt: ð86Þ
The reflection coefficient RFDBM is given by
RFDBM ¼ �n2r�1 nð1� rÞ þ rð Þ2

nþ 2rð1� rÞð1� nÞ : ð87Þ
As a series in h, we have
RFDBM ¼ �1� 2ikrð1� rÞhþ Oðh2Þ: ð88Þ
Again, we notice that if r = 0, then from (87) we have R = �1 = Rcont as in the case of the scheme FDDM.

Comparing the series expansions (88) with (84), we see that the distributed multiplier scheme has an extra
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factor of (2 � r)/(2 � 2r + r2) in the OðhÞ term for the expression for RFDDM as compared to the expression

for RFDBM. So the distributed multiplier method produces an error in the reflection coefficient that is

greater than the corresponding coefficient for the boundary multiplier case. This is due to the fact that

in the FDDM the entire wave is reflected back from the Lagrange multipliers interior to the obstacle x,
whereas in the boundary multiplier case a part of the wave is transmitted through x. We have
Fig. 12

amplit
2� r
2� 2r þ r2

¼ 1þ rð1� rÞ
2� 2r þ r2

6 1:2071 for 0 6 r < 1; ð89Þ
where the maximum value occurs at r = 0.5858.

We now compare the three different schemes FDM, FDDM, and FDBM, on the basis of their reflection

coefficients. Fig. 12 plots the error in the amplitude of the reflected wave
jRj � jRcontj ¼ jRj � 1; ð90Þ

against the number of nodes per wavelength L/h (left), for r = 0.5, where L denotes the wavelength, and

against r (right) for L/h = 20. We observe from Fig. 12 that for both the FDM and the FDDM schemes,

the entire wave is reflected back into the domain (�1,xr), albeit with different phase errors as shown in

Fig. 13. However, in the case of the scheme FDBM, part of the wave is transmitted through the boundary

into the fictitious domain x.
Thus, the solutions provided by the finite difference scheme and the distributed multiplier based fictitious

domain scheme are physically correct solutions, where as there is a non-physical solution that exists inside

the fictitious domain x in the boundary multiplier based fictitious domain method.

In Fig. 13, we plot the phase error Im(R) in the reflected wave i.e., we plot the imaginary part of the

reflection coefficient R against the number of nodes per wavelength for r = 0.5 (left), and against r for L/

h = 20 (right). All three schemes reflect part or the whole wave back with different phase errors. In this case,

we see that the phase error is the largest for the finite difference scheme FDM.

Finally, in Fig. 14 we plot the total error in the reflection coefficient
Total error ¼ jRcont � Rj ¼ j � 1� Rj; ð91Þ

against r for 20 nodes per wavelength (right) and against L/h for r = 0.5 (left). The total error is the largest

for the finite difference scheme FDM but decreases as r ! 0. The error for all schemes becomes comparable

as we increase the number of nodes per wavelength.
. Error in the amplitude of the reflected wave versus the number of nodes per wavelength (left) for r = 0.5, and the error in the

ude versus r for 20 nodes per wavelength (right).
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Fig. 13. The phase error in the reflected wave versus the number of nodes per wavelength for r = 0.5 (left), and the phase error in the

reflected wave versus r for 20 nodes per wavelength (right).
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Remark 1. We finally make the following observation. As seen from (82), most of the Lagrange multipliers

are zero except the one on the boundary (i.e., at x = xr) and another one to its right (i.e., at x = x2).

Analogously it may be possible to determine, a priori, in two and three dimensions the locations of zero and

non-zero Lagrange multipliers. This information can then be used to reduce the computational cost.
11. Conclusions and future work

In this paper, we have presented a distributed Lagrange multiplier based fictitious domain method for

the numerical solution of a time dependent problem of scattering by an obstacle. In this method the solu-

tion to the original problem is extended inside the obstacle and an additional variable, called a Lagrange

multiplier, is introduced to enforce the Dirichlet condition on the boundary of the obstacle. This distributed

Lagrange multiplier is defined on the boundary of the obstacle as well as in the interior of the obstacle, as
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opposed to a boundary Lagrange multiplier that is defined only on the boundary of the obstacle. We have

presented numerical schemes that utilize a fully conforming approach as well as mixed finite elements. The

main advantage of the distributed multiplier based fictitious domain method is the use of uniform meshes to

discretize the problems considered.

We have also presented an operator splitting scheme that incorporates the distributed multiplier and per-
fectly matched layers for solving the scattering problem. From the numerical examples and the one-dimen-

sional analysis presented in this paper, we can conclude that the distributed Lagrange multiplier approach

together with operator splitting gives a convenient way to treat the Dirichlet boundary condition. The oper-

ator splitting scheme does not seem to introduce any additional error as compared to the (non-split) mixed

finite element scheme and hence would be an advantageous way to treat more complicated problems which

involve more than one operator. Each subproblem involved in the operator splitting scheme is quite simple

to solve. Perfectly matched layers fit well in the mixed framework and these layers work well in practice

(about a wavelength or two in size). We have demonstrated via numerical examples that the PML model
introduced in this paper works well in practice.

As demonstrated in the 1D analysis in Section 10, the distributed multiplier based fictitious domain

method is more accurate than the finite difference approach. Even though the method remains first-order

accurate with respect to h the error is much better as compared to the staircase approximation of the finite

difference scheme. In the case of the boundary multiplier fictitious domain method the total error in the

reflection coefficient is also better than the total error in the finite difference method and slightly better than

the distributed multiplier method. However, the distributed multiplier approach has desirable properties, as

demonstrated by the phase and amplitude errors in the reflection coefficient, that are not shared by the
boundary multiplier approach.

The distributed multiplier based fictitious domain method can be extended to three dimensions in a

straightforward manner. Based on Remark 1, we conclude that it is possible to make adjustments to the

iterative solution of our discrete problem to reduce computational costs. This method can also be extended

to Maxwell�s equations and is the subject of a forthcoming paper.

The proof of an inf–sup condition related to the distributed multiplier has not been addressed in this

paper and this is one area which needs to be dealt with in the future. In general such proofs are non-trivial

and difficult to obtain.
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